Multi-objective formulation, a method to formulate eco-friendly and economic feed for monogastrics

L. Dusart ¹, <u>B. Méda</u> ², S. Espagnol ³, P. Ponchant ¹, D. Gaudré ³, A. Wilfart ⁴, F. Garcia-Launay ⁵

¹ ITAVI, ² INRA URA, ³ IFIP, ⁴ INRA UMR SAS, ⁵ INRA UMR PEGASE

Introduction (1/2)

Livestock vs. environment:

- climate change (≈15% of greenhouse gas emissions)
- land use (≈35% of croplands are used for animal feed)
- **eutrophication** (in regions with high animal density)

Feed production:

• 65-70% of production cost in pigs and broilers

 main contributor to many LCA* impacts: climate change (50-85%), eutrophication (64-97%), energy use (70-96%), land occupation (~100%)

Basset-Mens et al., 2005; Boggia et al., 2010; Dourmad et al., 2014; FAO, 2006, 2013; InterPIG, 2013; Leinonen et al., 2012a,b; Prudêncio da Silva et al., 2014; van Horne & Bondt, 2013;

*LCA: Life Cycle Assessment

Introduction (2/2)

Least cost feed formulation (LCF):

- the cheapest!
- but does <u>not</u> consider the environmental impacts

Least environmental impact feed formulation:

- effective to minimize one single impact
- but generally increases feed cost and possible trade-offs:
 e.g. least CC → feed cost: +30% ; acidification: +20% (Mackenzie *et al.*, 2016)

How to formulate diets with:

- lower environmental impacts compared to LCF
- limited trade-offs between impacts
 - a limited increase of feed cost

How multi-objective formulation (MOF) works? (1/2)

Formulation constraints on:

- nutritional characteristics (energy, lysine, phosphorus...)
- feedstuffs incorporation (maximum oil %, minimum of cereals...)
- environmental impacts ≤ 105% of impacts of least-cost formula

A single objective function to be optimized:

$$MIN\left[\left((1-\alpha) \times \frac{Price_{MOF}}{Price_{LCF}}\right) + \alpha \times \left(\frac{2}{5} \times \frac{CC_{MOF}}{CC_{LCF}} + \frac{1}{5} \times \frac{LO_{MOF}}{LO_{LCF}} + \frac{1}{5} \times \frac{PD_{MOF}}{PD_{LCF}} + \frac{1}{5} \times \frac{NRE_{MOF}}{NRE_{LCF}}\right)\right]$$

with $0 \le \alpha \le 1$

Considered impacts:

Climate Change (CC), Land Occupation (LO), Phosphorus Demand (PD), Non-Renewable Energy Demand (NRE), Eutrophication (EU), Acidification (AC)

How multi-objective formulation (MOF) works? (2/2)

$$MIN\left[\left((1-\alpha) \times \frac{Price_{MOF}}{Price_{LCF}}\right) + \alpha \times \left(\frac{2}{5} \times \frac{CC_{MOF}}{CC_{LCF}} + \frac{1}{5} \times \frac{LO_{MOF}}{LO_{LCF}} + \frac{1}{5} \times \frac{PD_{MOF}}{PD_{LCF}} + \frac{1}{5} \times \frac{NRE_{MOF}}{NRE_{LCF}}\right)\right]$$

Price Index (PI)
Environmental Index (EI)

0 ≤ α ≤ 1:

- $\alpha = 0 \Rightarrow$ least-cost formulation
- $\alpha = 1 \Rightarrow$ only environmental indicators
- 0 < α < 1 \Rightarrow infinite number of solutions
 - α_{lim}: last α where marginal EI ↘ is still > to marginal PI ↗ (in absolute value)

Data and scenarios

Environnemental impacts of feedstuffs:

- ECOALIM database (Wilfart *et al.*, 2016)
- <u>6 LCA impacts:</u> CC, LO, PD, NRE, EU, AC

Feedstuffs

- <u>4 price contexts:</u> 2011, 2012, 2013, 2014
- <u>2 availability contexts</u>: limited (LIM, current context) vs. non- limited (NLIM)

Species:

- <u>Pig:</u> grower and finisher phases
- <u>Broiler</u>: starter, grower and finisher phases

Evolution of environmental and price indexes with α

α ≤ 0.5:

• fast 凶 of El & ↗ of Pl

α > 0.5:

slower evolution of EI & PI

Sensitivity of α_{lim} :

- price context
- nutritional characteristics of feed
- availability of feedstuffs

(e.g. $0.46 \le \alpha \le 0.97$ in broiler)

Average¹ feeds for $\alpha = \alpha_{lim}$

Price and impacts of average¹ feeds for $\alpha = \alpha_{lim}$

	I	ncluded in th	NOT included in the OF				
	Price	CC	NRE	PD	LO	AC	EU
	(€)	(kg CO ₂ -eq)	(MJ)	(kg P)	(m ² .year)	(mol H⁺)	(kg PO ₄ ³⁻)
Pig							
LIM ²	+1%	-14%	-13%	-6%	-13%	-7%	-11%
NLIM ³	+4%	-23%	-14%	-25%	-16%	-17%	-17%
Broiler							
LIM ²	+3%	-12%	-18%	-12%	+4%	-4%	-7%
NLIM ³	+4%	-12%	-16%	-12%	+1%	-2%	-7%

¹ Pig: 40% Grower + 60% Finisher; Broiler: 6% Starter + 20% Grower + 74% Finisher.

² Compared to LIM-LCF.

³ Compared to NLIM-LCF.

EAAP 68th ANNUAL MEETING Tallinn, Estonia 2017

Consequences at farm gate: final price & impacts per kg of BW

	I	ncluded in th	NOT included in the OF				
	Price ¹	CC	NRE	PD	LO	AC	EU
	(€)	(kg CO ₂ -eq)	(MJ)	(kg P)	(m ² .year)	(mol H⁺)	(kg PO ₄ ³⁻)
Pig ²							
LIM ⁴	+1%	-7%	-8%	-5%	-10%	-2%	-7%
NLIM ⁵	+4%	-12%	-14%	-16%	-13%	-3%	-7%
Broiler ³							
LIM ⁴	+3%	-10%	-14%	-12%	+3%	-2%	-5%
NLIM ⁵	+4%	-10%	-12%	-10%	+0%	-1%	-5%

¹ **Pig:** feed cost; **Broiler:** production cost.

² Breeding-fattening farm: FCR = 2.73 (fattening period); final BW = 118.1kg.

³ Conventional broiler farm: FCR = 1.73; final BW = 1.83 kg.

⁴ Compared to LIM-LCF. ⁵ Compared to NLIM-LCF.

Conclusions

Feed price & impacts considered together:

- simultaneous ↘ of several impacts
- limited 7 of feed cost
- limited trade-offs between impacts

An efficient tool to impacts of pig & broiler productions

- limited 7 of production cost
- combination with ≠ feeding strategies (Espagnol et al., EAAP 2017 Session 11)

Availability of feedstuffs:

 competition between productions on a territory (Espagnol *et al.*, EAAP 2017 Session 19)

Elevages et environnement

Thank you for your attention! Any questions?

bertrand.meda@*inra.fr* http://www6.inra.fr/ecoalim_eng/

With the financial support of:

How multi-objective formulation works?

How multi-objective formulation works?

Phosphorus Demand (PD), Non-Renewable Energy Demand (NRE), Eutrophication (EU), Acidification (AC)

Dusart *et al.* Multiobjective formulation, a method to formulate eco-friendly and economic feed for monogastrics

Incorporation rate of

each feedstuff

LCA impacts